# The BriefA Blog about the LSAT, Law School and Beyond

An LL.M. is a one-year master’s degree for candidates who already have a degree in law, and it can help them switch to a new field of law, get a new job, or gain a professional edge. Read about why you might apply and how to maximize your chances in our admissions course: https://7sage.com/admissions/lesson/all-about-ll-m-degrees/.

On today's episode David Busis, co-founder of 7Sage Admissions Consulting, speaks with Elizabeth Cavallari, an ex-admissions dean of admissions at William & Mary Law School about how to manage the waitlist.

The annual uproar about law school rankings might lead you to believe that the rank of the school you attend is the only factor in determining whether you will become a successful lawyer. As *Above The Law* points out, the T14 law school rankings, as determined by *US News and World Report*, rely heavily on inputs – especially peer assessment, grades, and LSAT scores — while ATL’s rankings rely more heavily on outputs like jobs and starting salaries. Given that the two lists overlap quite heavily at the top, I wouldn’t blame you for feeling like you might as well say goodbye to your law career before you’ve even read your first case note if you don’t get into a T14 school. But don’t lose heart! Many, many law school graduates attend non-T14 schools and go on to have successful law careers.

I speak from experience. By way of background, I graduated from Emory Law School squarely in the middle of my class. It was a great place to go to school, with whip-smart professors and clinics, but it was not T14 when I attended and still isn’t (though it’s been solidly T25 for many years). Emory is also located in Atlanta, which, for all of its charms, was not the city where I intended to practice upon graduation. Like so many others, I had my eyes set on New York City. I managed to write myself onto the law review which, given my highly mediocre class ranking, definitely helped boost my resumé. This, combined with my comfort with interviewing, helped me land a job in Big Law in the New York office of a Chicago-based firm, where I specialized in real estate law.

I jumped ship after five years and wound up in Cardozo’s admissions office, where I counseled prospective students about whether they should or shouldn’t go to law school, and why they might be a good fit for Cardozo in particular. I later returned to practicing real estate law with the New York City Economic Development Corporation. As a lawyer, first in private practice and later for the City of New York, I regularly interviewed candidates for summer associate and lateral positions. While I can’t speak for every law firm or government agency, I do think I have some insight about whether attending a T14 law school really matters—so here goes!

#### When does attending a T14 law school *really* matter?

On today's episode, J.Y. talks about Must Be True questions from the Logical Reasoning section of the LSAT.

On today's episode, J.Y. talks about Most Strongly Supported questions from the Logical Reasoning section of the LSAT.

On today's episode, David speaks with Julian Morales, Director of Admissions at Penn State Law.

Below, you'll find an overview of the different probability posts, listed by suggested order of completion:

- An Introduction to Probability
- Five Basic Facts About Probability
- Probability for a Single Event - P(A)
- Probability of Both Events Occurring - P(A and B)
- Optional: Why the P(A and B) Rule Works

- Probability of One or Another Event Occurring - P(A or B)
- Optional: Why the P(A or B) Rule Works

- Probability for Outcomes Not Occurring - P(not A)
- Probability for Outcomes That Are Not Equally Likely
- An Introduction to Combinatorics
- Optional: Why Does the Permutation Rule Work

- Combinations
- Permutations with Repeated Objects

On today's episode, J.Y. talks about Fill in the Blank with a Conclusion questions from the Logical Reasoning section of the LSAT.

Sometimes, the order of our objects does not matter. For example, suppose a professor is trying to assign people to different study groups. Then, it does not matter who gets assigned to the study group first; what matters is who is in which study groups, as in the following example:

**Example
A professor is trying to split up his class of 9 students into 3 groups of 3. How many ways can he do this?**

Or we might have:

**Example
**An appeals court is convening a 3-judge panel to hear a certain case. There are 26 judges in the courthouse. How many 3-judge panels are possible?

Now suppose that of the 26 judges, 13 are conservative and 13 are liberal. How many possible 3-judge panels will have at least one conservative and one liberal on the panel?

To address these kinds of problems, we will use the following:

**Rule for Combinations
**If you have

*n*objects and you want to pick

*k*of them to form a group, then there are n!/((n-k)!k!) ways to do so.

Let's try to solve our earlier example with this rule.

**Solution
**By applying our rule, we know that there are ways of choosing 3 judges from the total group of 26 judges in order to form a panel. We can directly calculate this:

, since and .

Thus,

So there are 2600 ways to pick such a panel.

But why does this rule make sense? Well, let’s start with our rule for permutations: if I want to form a line of three judges from this group of 26, then there are 26*25*24 ways of doing this. This is because we have three spots to fill:

____ ____ ____

And for the first spot, we can pick any of the 26 judges; for the second, we can pick any of the remaining 25 judges, and for the last spot, we can pick any of the remaining 24 judges.

But here is the problem: we don’t actually care about the order in which we pick the judges. Suppose we have Judge Abby, Judge Ben, and Judge Cynthia. Then, we want to treat this possibility:

Abby Ben Cynthia

the same as this possibility:

Ben Abby Cynthia

which is in turn the same as

Cynthia Abby Ben

Cynthia Ben Abby

Abby Cynthia Ben

Ben Cynthia Abby.

We want to count all of these possibilities just once, since for us, a panel with Abby, Ben and Cynthia on it is just the same as a panel with Cynthia, Abby, and Ben on it. They’re not actually different!

Now, whenever we pick three judges from the 26 total judges, there are 3! ways to order those judges. This is because, for the first slot, we can pick any one of the three judges, for the second slot, we can pick any one of the remaining two judges, and for the last slot, we are stuck with the final judge.

So our permutation 26*25*24 actually counts each of these panels 3! times, when we only want to count each panel once. Suppose a panel has judge A, B, and C on it. Then our permutation counts:

ABC

ACB

BAC

BCA

CAB

CBA

So since our permutation is counting these panels 3! times when it should be counting them just once, we divide by 3! to get our final answer.

And, in general, the formula for how many combinations of *k* items we can pick from *n* objects is just equal to the number of permutations of *k* items we can pick from *n* objects, divided by (*k*!). Dividing by *k*! is how we make sure we are not counting all the different orders a particular combination can be put in.

**Practice Problems**

Question 1

**A professor is trying to split up his class of 8 students into two groups of 4 students each. How many ways can he do this?**

Question 2

Congress has decided to randomly pick a group of 4 congresspeople to lead a congressional committee. There are 535 congresspeople. How many groups are possible? What is the probability that any particular congressperson will be on the committee?

Question 3

Congress has decided to randomly pick a committee of 4 congresspeople, but they decide to pick as follows: 2 seats are randomly chosen from the Representatives while the remaining 2 are randomly chosen from the Senate. How many committees are possible? What is the probability that any particular Representative will be on the committee? What is the probability that any particular Senator will be on the committee?

And finally, we want to address the case when we have permutations with repeated objects. What if we have something like:

**E****xample
**The DMV is wondering how many new license plates it can form from just the letters: T, T, and R. How many such license plates are there?

Now, this question is something of a hybrid between our permutations and combinations. It is true that the order of the objects matters: TTR is not the same license plate as RTT. But we can’t just treat it as a standard permutation where we calculate n!/(n-k)!. If we tried that, we would get:

3!/(3-3)! = 3! = 6

But, if we list out all the possibilities, we find that we cannot form 6 different possibilities. The only possible license plates are:

TTR

TRT

RTT

You can try to think of another ordering, but there isn’t one. So treating it as a normal permutation leads us to the wrong answer. What is going on here?

To see what’s going wrong, let’s label our two T’s as T1 and T2. Now, let’s see how many ways we can order them:

T1 T2 R

T1 R T2

T2 T1 R

T2 R T1

R T1 T2

R T2 T1

Now we get the six possibilities we were expecting. But, remember, as a license plate, it doesn’t matter whether one uses T1 or T2. At the end of the day, the letter that shows up on the plate is just T. So, for example, combinations like R T1 T2 are just the same as R T2 T1. They both result in license plates that look like:

R T T

So, like in our combination problem, our permutation is over-counting things. It is treating as distinct some possibilities that are, in fact, the same. Here, our permutation gives us 6 possible outcomes. But, in fact, the ones with the same color are the same:

**T1 T2 R**

**T1 R T2**

**T2 T1 R**

**T2 R T1**

**R T1 T2**

**R T2 T1**

And we see that, in fact, we only have 3 different possibilities, which is what we found in listing out the possible license plates.

So our rule for these cases:

**Permutations with Repeated Objects
**Suppose you want to order

*k*objects where one of the objects repeats

*n*times. Then, the number of possible orderings is: .

is again a way of correcting for our over-counting. In our case, we can think of this rule as saying: there are 6 permutations. But within those permutations, the order of the T1 and T2 doesn’t matter. There are 2! ways to order T1 and T2, so the total number of distinct ways to order R, T, and T is just: 6/2! = 3.

Here is an application of this rule that involves larger numbers:

**Example
**You are playing Scrabble. Your hand has: T, R, S, S, S, E, and F. How many possible ways are there to order all of your tiles?

**Solution
**Following our rule, we want to find a way to order 7 objects (i.e. our 7 letters) where one of the objects is repeated 3 times. Then, there are 7!/3! ways to do this. And again,

7! = 7*6*5*4*3!

So,

7!/3! = 7*6*5*4 = 210

There are 210 possibilities

**Practice Problems**

Question 1

You are trying to come up with anagrams. You get the letters: A, Z, P, P, E, D. How many 6-letter combinations can be formed?

Question 2

You are playing Scrabble. You get the letters: S, S, S, S, T, E, P, X. How many 8-letter combinations can be formed?