When an ordinary piece of steel is put under pressure, the steel compresses; that is, its volume slightly decreases. ██████ ████████ ██ █ ██████ ██ ██████ ████ ████████████ ██ █████ ████ ███ █████ █████████ ███ ██████ ███████ ██████████ ███ ███████ ██ █ █████ ██ █████ ████ ██ █████ █████████ ████████ ████ ████ ██████ ████ ██ █████ █████ ████ █████████ ██████████ ██ █ ███████ █████████ █████ ██████ ██ ██████ ██ ███ ██████ ██ █ ██████████ █████ ██ █████ ██ ███████ █████████ ███ ██ ███ █████ ██ ████ ██ ███████ ███ ██████ ███████ █████████ ████ ███ █████ ██ █████ ████ ██████████ ████████
Today, we’re learning about glass. Glass is a fluid, so when it’s put under pressure, its volume stays the same but it flows slowly to an area of lesser pressure. The stimulus proposes an example where an extremely heavy object is placed on the middle of a sheet of glass. So what happens?
Based on the scenario given, we can see that a heavy object would put pressure on the middle of the sheet of glass. Because glass flows away from pressure without changing in volume, we can infer that over time the sheet of glass would shift away from the pressure, becoming thinner in the middle where the object is, and thicker around the edges.
Which one of the following ████ █████████ █████████ ███ █████████
become larger in ████ ███ █████ ██ ██ ███████ █████████
flow toward the █████ ██ █████ ███ ████████ ██ ███ ██████ ██ ████████
compress, although not ██ ████ ██ █ █████ ██ █████ █████
divide into exactly ███ ██████ ████ ███ █████ ██ ███████ ████ ███ █████ ██ ███ ████████ █████ ██ █████
be thinner in ███ ███████ ██ ███ █████ ████ ██ █████ ███ ████████ ██ ███ ██████ ████ ██ █████ ████████ ██ ███ █████ ████ ███ ███ █████ ████ ████████