Support Tanya would refrain from littering if everyone else refrained from littering. ████ ██ ███ ███████ ███████ ███ █████████ ███ ████ ███ ██████ ███████
The first premise in this argument is a conditional statement: if everyone refrained from littering, then Tanya would, too. The second premise is that the sufficient condition is partially met—some people (Tanya’s friends) don’t litter. The author then concludes that the necessary condition is true.
We can’t conclude that a necessary condition is true based only on the knowledge that the sufficient condition is partially satisfied! If we knew that everyone refrained from littering, then we could conclude that Tanya refrains, too. But we only know that some people refrain, so we have no idea whether Tanya litters or not.
Which one of the following ████ ██████ █████████ ████ ███████ ██ ███ ██████ █████████ ██ ███ ████████ ██████
All residents of ███ ████ ████████████ ████ ████ █████ ██ ███████ ███ █████ ██ ████████████ █████████ █████ ████████████ ████ ██ █ █████ █████ ██ ████ █████ █████████ ██ ████ ████████████ ████ █████ ████ █████
If a talented ██████ ██ ███████ ██ ██████ ███ ███ ███████ ████ ███ ███████ ██████ ████ ███ ██████ ██ ██████████ ██████████ ███████ ███████ ████ ███ ██████ ██ ██████████ ██████████ ███ ███ ██ ███████ ██ ██████ ███ ███ ███████ ██ ███ ████ ██ █ ████████ ███████
Herbert will stop ███████ ██████ ████████ ██ ███ █████ ██ ████ ██ ███ ███████ █████████ ██████████ ████ ██ ███ ███████ █████████ █████ ████ ████ ███████ ████ ██████ █████████ ██ █████ █████████ ████ ███ █████████
If all whales ████ ██ ███████ ███ ████ ████ ██████ ████ ██ ████ ██ ████████ ████ ██████ ███ ██████ █████████ ██ ████ ████ ███████ ███ ████
If all of █ ████████████ █████████ ████ ███ █████ ██ ████ ██ ██ ███████████ ███████████ ████████ ████ ███████ █████████ █████ ███ ████ ██ ████ ██████ ██ ██ ████ ██ ██ ███████████ ███████████