The coach of the Eagles used a computer analysis to determine the best combinations of players for games. ███ ████████ ████████ ████ ███ ████ ███ ████ ████ ████ ████████ ███ ███ ████████ ████████ ██ ████████ ███ ██████ ██ ████████ ████ ████████████ ████ ████ ██ ███████████ ██ █████████ ███ ██ ████ ████ ██ ████████ ████ ██████████ ████████ ██ ███ ████ ████ ██████ ████ ███ ██████ ████ ████
The author concludes that Jennifer’s presence in the game will ensure that the Eagles (Jennifer’s team) will win. This is based on computer analysis showing that in every game that the team has lost, Jennifer was not playing.
Although the premises establish that in all prior games, whenever Jennifer was in, the team didn’t lose (this is the contrapositive of “Team lost only when J wasn’t playing”), that doesn’t imply that this relationship must continue to be true for future games. In other words, what’s true about the past doesn’t have to be true about the future.
There’s also an assumption that in the games that the team didn’t lose, the team actually won (as opposed to having the game end in a tie).
The argument above is most ██████████ ██ █████████ ██ ███ ███████ ████ ██
infers from the ████ ████ █ ███████ ██████ ██ ██████████ ███ █ ██████ ████ ███ ███████ ██ ████ ██████ ██ █████████ ███ ███ ████████ ██████
presumes, without providing ██████████████ ████ █ ████████ ████████████ ██ █ ██████ ███ ██ ████ ███ ██ ████████ ██████████ ███ ████████ ██ ████████
draws conclusions about ████████████ ██ ████████ ████████ ██ ██████ ████ ███ ████████ ██ █ ██████ ████
presumes, without providing ██████████████ ████ ███████████ ████ ████ █████████ ██ ███ ████ ████ ████████ ██ ████████
draws a conclusion █████ ███ █████ ██ ████████ ████████ ████ █ ████ ██ █████ ████████ ████████ ████████ ██ █████ ██████ ████ ███ ███████ █████