Three million dollars was recently stolen from the City Treasurer's Office, and, from what we know so far, we can conclude that some members of the mayor's staff are suspects. ███ ████████ ███ ███ ██████ █████████ ██ ███ ████ ███████████ ███████ ███ ███ ███████ █████ ████████ ██████ █████████ ██ ████ ███████
The argument presents two premises: a conditional statement and a “some” statement. It then chains the two statements together to draw another “some” statement as a conclusion. 
This argument features bad conditional reasoning. If the “some” statement was in the first part of the diagram and followed by the conditional statement, then we could validly infer a “some” relationship between the first and last variables. But in this argument, a conditional statement is instead followed by a “some” statement, which is invalid. It’s like concluding that some middle school students play for the NBA, since all middle school students live in America, and some Americans play for the NBA.
The flawed nature of the ████████ █████ ███ ████ ███████████ ██ ████████████ ██ ██████ █████ ██ ████████ ██████████ ██ █████ ████████ ████
some painters are █████████ █████ ████ █████████ ███ ██████ ███ ████ ████████ ███ ██████
some cabins are ███████████ █████ ███ ███████████ ███ █████████ ███ ████ █████████ ███ ██████
some tables are ██████ █████ ███ ██████ ███ █████████ ███ ███ ██████ ███ █████████
all supermarkets sell █████████ █████ ███ ████████████ ████ ████ ███ █████████ ██ █ ████
all animals are ████ █████ ████ ████ ███ ████ ███ ████ ███████ ███ ████