Support Most pet owners who take allergy medication are allergic to pets. ██████████ █████ █████ ████ █ ███ ████ ██ ██ ██████ ████ ██ ████ ████ ███████ ██████████ ██ ██ ████████ ██ ███████ ██ █████
Here’s the rule you can use to distinguish between right and wrong answers in this question: the conclusion needs to apply the premise's rule backward. Here’s a breakdown in English:
Premise: Most med-takers are allergic.
-----
Conclusion: If Chuck gets allergic, he’ll likely take meds.
And here’s a breakdown in Lawgic:
Premise: Meds –most→ Allergic
-----
Conclusion: ChuckAllergic –likely→ ChuckMeds
If you’re working with a much more complex model, that’s completely understandable. This question involves a ton of apparent complexities that turn out to be irrelevant. Where’s the concept of pet ownership? Aren’t there two premises? What’s the deal with the jump from most to likely?
These are all great questions with nuanced answers I’m not gonna provide here. Why? Because of this fundamental principle of multiple choice strategy:
Core Multiple Choice Principle: if you have a complaint about one answer choice that applies equally well to the other answers you’re considering, that complaint cancels out. You can’t use it as a reason to pick one over the other, so you should stop worrying about it.
Except for the concepts preserved in the template above, all the complex structural elements and potential mismatches you might have noticed appear in every single answer choice. To give just one example:
As it happens, you can validly translate most claims to likely claims. But that fact doesn’t matter because all the answer choices jump from most to likely.
Which one of the following █████████ ████████ ██████ █████████ ████ ██ ████ ███████ ██ ████ █████████ ██ ███ ████████ ██████
Most cars taken ██ ████ ██████████ ███████████ ████ ██████████ █████████ ██████████ ██ ██ ██████ ████ ███████████ ███ ███ ██████████ ████████ ██ ███ ███ █████ ██ ██ ████ ██████████ ████████████
Most cars taken ██ ████ ██████████ ███████████ ████ ██████████ █████████ ██████████ ██ ██ ██████ ████ █████████ ████ ████ ███ ███ █████ ██ ██ ███ ██████████ █████████
Most cars that ███ █████ ██ ████ ██████████ ███████████ ██ ███ ████ ██████████ █████████ ██████████ ██ ██ ██████ ████ █████████ ████ ███ ████ ███ ███ ██ ████ ██████████ ███████████ ██ ██ ███ ██████████ █████████
Most cars taken ██ ████ ██████████ ███████████ ████ ██████████ █████████ ██████████ ██ ██ ████████ ████ █████████ ████ ████ ███ ███ ██ ████ ██████████ ███████████ ██ ██ ████ ███ ████ ██████████ █████████
Most cars taken ██ ████ ██████████ ███████████ ████ ██████████ █████████ ██████████ ██ ██ ██████ ████ █████████ ████ ████ ███ ███ ██ ████ ██████████ ███████████ ████████ ███ ██████ ██ ███ ██████████ █████████